No puede seleccionar más de 25 temas Los temas deben comenzar con una letra o número, pueden incluir guiones ('-') y pueden tener hasta 35 caracteres de largo.
 
 
 

450 líneas
14 KiB

#include <stddef.h>
#include <stdalign.h>
#include "allocator_internal.h"
#ifdef DEBUG
#include <stdio.h>
void debug_print_tree(int indent, void *p) {
TreeAlloc *node = (TreeAlloc*) p;
if (node != NULL) {
debug_print_tree(indent + 1, node->left);
for (int ii = 0; ii < indent; ii++) { printf(" "); }
if (node->color == COLOR_RED) { printf("\e[31"); }
printf("%p %lu\n", node, node->size);
if (node->color == COLOR_RED) { printf("\e[37"); }
debug_print_tree(indent + 1, node->right);
}
}
#endif
TreeAlloc *insert_node_at(void *address, uintptr_t padding, uintptr_t align, uintptr_t size) {
return NULL;
}
/*
* Search for the node whose allocated region contains an address.
*/
TreeAlloc *search_by_address(TreeAlloc *root, void *address) {
TreeAlloc *head = root;
while (1) {
if (head > (TreeAlloc*) address) {
if (head->left == NULL) {
return NULL;
} else {
head = head->left;
}
} else {
if (head->right == NULL || head->right > (TreeAlloc*) address) {
return head;
} else {
head = head->right;
}
}
}
}
static uintptr_t effective_size(TreeAlloc *head, uintptr_t padding, uintptr_t align) {
return head->size - (align_after(head + padding, align) - (void*) head);
}
/*
* This is the most optimistic estimate of size that we can use which also preserves the ordering over
* the tree. I had planned to use effective_size before I realized that it would break the tree
* ordering.
*/
static uintptr_t pessimistic_size(TreeAlloc *head, uintptr_t padding, uintptr_t align) {
return head->size - padding - align + 1;
}
TreeAlloc *search_by_size(TreeAlloc *root, uintptr_t padding, uintptr_t align, uintptr_t size) {
TreeAlloc *head = root;
while (1) {
uintptr_t esize = pessimistic_size(head, padding, align);
if (esize < size) {
if (head->right == NULL) {
return NULL;
} else {
head = head->right;
}
} else {
if (head->left == NULL || pessimistic_size(head->left, padding, align) < size) {
return head;
} else {
head = head->left;
}
}
}
}
TreeAlloc *get_sibling(TreeAlloc *ta) {
TreeAlloc *p = ta->parent;
if (!p)
return NULL;
else if (p->left == ta)
return p->right;
else
return p->left;
}
void rotate_left(TreeAlloc **root_ptr, TreeAlloc *ta) {
TreeAlloc *parent, *tmp;
parent = ta->parent;
tmp = ta->right;
if (!tmp) return;
ta->right = tmp->left;
tmp->left = ta;
ta->parent = tmp;
if (ta->right) ta->right->parent = ta;
if (parent == NULL) {
*root_ptr = tmp;
} else {
if (ta == parent->left)
parent->left = tmp;
else
parent->right = tmp;
}
tmp->parent = parent;
}
void rotate_right(TreeAlloc **root_ptr, TreeAlloc *ta) {
TreeAlloc *parent, *tmp;
parent = ta->parent;
tmp = ta->left;
if (!tmp) return;
ta->left = tmp->right;
tmp->right = ta;
ta->parent = tmp;
if (ta->left) ta->left->parent = ta;
if (parent == NULL) {
*root_ptr = tmp;
} else {
if (ta == parent->left)
parent->left = tmp;
else
parent->right = tmp;
}
tmp->parent = parent;
}
void repair_tree_after_insert(TreeAlloc **root_ptr, TreeAlloc *ta) {
TreeAlloc *parent = ta->parent;
if (parent == NULL) {
ta->color = COLOR_BLACK;
return;
}
TreeAlloc *grandparent = parent->parent;
TreeAlloc *uncle = get_sibling(parent);
if (parent->color == COLOR_RED) {
if (uncle != NULL && uncle->color == COLOR_RED) {
parent->color = COLOR_BLACK;
uncle->color = COLOR_BLACK;
grandparent->color = COLOR_RED;
repair_tree_after_insert(root_ptr, grandparent);
} else {
if (ta == parent->left && parent == grandparent->left) {
rotate_left(root_ptr, parent);
ta = ta->left;
} else {
rotate_right(root_ptr, parent);
ta = ta->right;
}
parent = ta->parent;
grandparent = parent->parent;
if (ta == parent->left) {
rotate_right(root_ptr, grandparent);
} else {
rotate_left(root_ptr, grandparent);
}
parent->color = COLOR_BLACK;
grandparent->color = COLOR_RED;
}
}
}
void replace_node(TreeAlloc **root_ptr, TreeAlloc *node, TreeAlloc *replace) {
if (!node->parent) {
*root_ptr = replace;
} else {
if (node == node->parent->left)
node->parent->left = replace;
else
node->parent->right = replace;
}
if (replace) replace->parent = node->parent;
}
void repair_after_remove(TreeAlloc **root_ptr, TreeAlloc *node) {
if (node->color == COLOR_RED) {
node->color = COLOR_BLACK;
} else {
TreeAlloc *sibling = get_sibling(node);
if (sibling->color == COLOR_RED) {
if (node->parent->left == node)
rotate_left(root_ptr, node->parent);
else
rotate_right(root_ptr, node->parent);
node->parent->parent->color = node->parent->color = COLOR_BLACK;
}
if (sibling->left->color == COLOR_BLACK && sibling->right->color == COLOR_BLACK) {
node->color = COLOR_BLACK;
sibling->color = COLOR_RED;
repair_after_remove(root_ptr, node->parent);
} else {
if (node->parent->left == node && sibling->right->color == COLOR_BLACK) {
rotate_right(root_ptr, sibling);
sibling = get_sibling(node);
sibling->color = COLOR_RED;
sibling->right->color = COLOR_RED;
rotate_left(root_ptr, node->parent);
node->color = get_sibling(node->parent)->color = COLOR_BLACK;
} else if (node->parent->right == node && sibling->left->color == COLOR_BLACK) {
rotate_left(root_ptr, sibling);
sibling = get_sibling(node);
sibling->color = COLOR_RED;
sibling->left->color = COLOR_RED;
rotate_right(root_ptr, sibling);
node->color = get_sibling(node->parent)->color = COLOR_BLACK;
}
node->parent->color ^= node->parent->parent->color;
node->parent->parent->color ^= node->parent->color;
node->parent->color ^= node->parent->parent->color;
}
}
}
void remove_node(TreeAlloc **root_ptr, TreeAlloc *node) {
char do_repair = 0;
TreeAlloc *replace;
TreeAlloc *parent = node->parent;
if (!node->left) {
replace = node->right;
do_repair = node->color == COLOR_BLACK;
replace_node(root_ptr, node, replace);
} else if (!node->right) {
replace = node->left;
do_repair = node->color == COLOR_BLACK;
replace_node(root_ptr, node, replace);
} else {
TreeAlloc *tmp = node->right;
while (tmp->left) tmp = tmp->left;
replace = tmp->right;
do_repair = tmp->color == COLOR_BLACK;
if (tmp != node->right) {
replace_node(root_ptr, tmp, replace);
tmp->right = node->right;
node->right->parent = tmp;
}
replace_node(root_ptr, node, tmp);
tmp->color = node->color;
tmp->left = node->left;
node->left->parent = tmp;
}
if (do_repair && replace) {
repair_after_remove(root_ptr, replace);
}
}
// Inserts a node into an empty tree.
void insert_singleton(TreeAlloc **root_ptr, TreeAlloc *to_insert) {
*root_ptr = to_insert;
to_insert->parent = NULL;
repair_tree_after_insert(root_ptr, to_insert);
}
void insert_right(TreeAlloc** root_ptr, TreeAlloc* to_insert, TreeAlloc* after) {
if (after->right != NULL) {
after->right->parent = to_insert;
to_insert->right = after->right;
}
after->right = to_insert;
to_insert->parent = after;
repair_tree_after_insert(root_ptr, to_insert);
}
void insert_left(TreeAlloc** root_ptr, TreeAlloc* to_insert, TreeAlloc* before) {
if (before->left != NULL) {
before->left->parent = to_insert;
to_insert->left = before->left;
}
before->left = to_insert;
to_insert->parent = before;
repair_tree_after_insert(root_ptr, to_insert);
}
int add_new_region(Arena *arena, uintptr_t size, uintptr_t padding, uintptr_t align) {
uintptr_t realsize = size + align + alignof(WatermarkAlloc) + padding - 1;
if (realsize < MIN_NEW_MEM_SIZE) {
realsize = MIN_NEW_MEM_SIZE;
}
FreeSpace *reg = (FreeSpace*) arena->get_new_region(realsize);
if (reg == NULL) {
arena->error("can't allocate a new memory region!");
return 0;
}
FreeSpace *newreg = align_after(reg, alignof(WatermarkAlloc));
newreg->left = NULL;
newreg->right = NULL;
realsize -= (void*) newreg - (void*) reg;
realsize -= realsize % alignof(WatermarkAlloc);
newreg->size = realsize;
if (arena->root_freespace == NULL) {
insert_singleton((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) newreg);
} else {
FreeSpace *head = arena->root_freespace;
while (head->right != NULL) {
head = head->right;
}
insert_right((TreeAlloc**) arena->root_freespace, (TreeAlloc*) newreg, (TreeAlloc*) newreg);
}
return 1;
}
void unalloc(Arena *arena, void *addr) {
#ifdef DEBUG
printf("==== UNALLOCATING ====\n");
printf("=== FREESPACE TREE ===\n");
debug_print_tree(0, arena->root_freespace);
printf("=== TREEALLOC TREE ===\n");
debug_print_tree(0, arena->root_treealloc);
printf("=== END OF TREES ====\n");
#endif
if (arena->root_treealloc == NULL) {
arena->error("attempt to unallocate when there are no allocations!");
return;
}
// Find the node this address belongs to
TreeAlloc *node = search_by_address(arena->root_treealloc, addr);
if (node == NULL) {
arena->error("attempt to free memory outside any allocations!");
return;
}
// Handle the watermark allocator in this region
if (node->type == RT_WATERMARK) {
// TODO: handle watermark deallocation
return;
}
// Get rid of it
remove_node(&arena->root_treealloc, node);
// If there's free space on either side of it, merge it with the free space into a bigger chunk of
// free space.
uintptr_t size = node->size;
FreeSpace *start = (FreeSpace*) node;
if (node->before != NULL && node->before->type == RT_FREESPACE) {
start = (FreeSpace*) node->before;
size += node->before->size;
remove_node((TreeAlloc**) &arena->root_freespace, node->before);
}
if (node->after != NULL && node->after->type == RT_FREESPACE) {
size += node->after->size;
remove_node((TreeAlloc**) &arena->root_freespace, node->after);
}
start->type = RT_FREESPACE;
start->size = size;
// And finally, insert the resulting free space.
if (arena->root_freespace == NULL) {
insert_singleton((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) start);
} else {
TreeAlloc *insert_point = search_by_size((TreeAlloc*) arena->root_freespace, 0, 1, size);
if (insert_point == NULL) {
TreeAlloc *head = (TreeAlloc*) arena->root_freespace;
while (head->right != NULL) {
head = head->right;
}
insert_right((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) start, head);
} else {
insert_left((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) start, insert_point);
}
}
}
void *alloc(Arena *arena, uintptr_t size, uintptr_t align) {
uintptr_t actual_align = lcm(alignof(struct WatermarkAlloc), align);
#ifdef DEBUG
printf("==== ALLOCATING =====\n");
printf("=== FREESPACE TREE ===\n");
debug_print_tree(0, arena->root_freespace);
printf("=== TREEALLOC TREE ===\n");
debug_print_tree(0, arena->root_treealloc);
printf("=== END OF TREES ====\n");
#endif
if (arena->root_freespace == NULL) {
// Handle being out of freespace.
if (!add_new_region(arena, size, sizeof(TreeAlloc), actual_align)) {
return NULL;
}
return alloc(arena, size, align);
} else {
TreeAlloc *region = search_by_size((TreeAlloc*) arena->root_freespace, sizeof(TreeAlloc), actual_align, size);
if (region == NULL) {
// Handle insufficient freespace or fragmentation.
if (!add_new_region(arena, size, sizeof(TreeAlloc), actual_align)) {
return NULL;
}
return alloc(arena, size, align);
}
remove_node((TreeAlloc**) &arena->root_freespace, region);
void *true_end = align_after(align_after(((void*) region) + sizeof(TreeAlloc), actual_align) + size, alignof(WatermarkAlloc));
// The size of the new allocation (adjusted for region header and alignment
uintptr_t new_size = true_end - (void*) region;
// The size of the free space region following the new allocation
uintptr_t new_free_size = region->size - new_size;
region->right = NULL;
region->left = NULL;
region->type = RT_TREE_NODE;
#ifdef DEBUG
printf("sizeof(TreeAlloc): %lu\n", (uintptr_t) sizeof(TreeAlloc));
printf("start: %p, end: %p, adjusted end: %p\n", region, ((void*) region) + size, true_end);
printf("size: %lu -> %lu\n", size, new_size);
#endif
if (arena->root_treealloc == NULL) {
insert_singleton((TreeAlloc**) &arena->root_treealloc, region);
} else {
TreeAlloc *insert_point = search_by_address((TreeAlloc*) arena->root_treealloc, region);
insert_right(&arena->root_treealloc, region, insert_point);
}
if (new_free_size >= sizeof(FreeSpace)) {
// If there's enough free space after the allocation, use it!
region->size = new_size; // Safe because the allocated region tree is not sorted by size.
FreeSpace *new_free = (FreeSpace*) ((void*) region + new_size);
new_free->left = NULL;
new_free->right = NULL;
new_free->type = RT_FREESPACE;
new_free->size = new_free_size;
if (arena->root_freespace == NULL) {
insert_singleton((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) new_free);
} else {
FreeSpace *insert_point = (FreeSpace*) search_by_size((TreeAlloc*) arena->root_freespace, 0, 1, new_free_size);
insert_left((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) new_free, (TreeAlloc*) insert_point);
}
}
return align_after(region + sizeof(TreeAlloc), actual_align);
}
}
void *alloc_growable(Arena *arena, uintptr_t size, uintptr_t align) {
// TODO: Basically the same as above, but put the allocated region in the center of the largest free
// space. Due to alignment and whatnot, the code will be gory.
return NULL;
}