Browse Source

Thick refactor in attempt to fix things

tree_alloc
Cameron Weinfurt 1 year ago
parent
commit
ac2bc19ef1
  1. 1
      Makefile
  2. 804
      tree_alloc.c

1
Makefile

@ -6,6 +6,7 @@ OUT_NAME = the_alloc
dev: CFLAGS= $(COMMON_FLAGS) -g -D UNIT_TESTS -D DEBUG=1
dev: $(OUT_NAME)
rm -f vgcore.*
valgrind ./$(OUT_NAME)
release: CFLAGS= $(COMMON_FLAGS) -O2

804
tree_alloc.c

@ -8,28 +8,28 @@
#include <stdio.h>
int debug_tree_black_height(TreeAlloc *node) {
if (node == NULL) {
return 1;
}
return ((node->color == COLOR_BLACK) ? 1 : 0) + debug_tree_black_height(node->left);
if (node == NULL) {
return 1;
}
return ((node->color == COLOR_BLACK) ? 1 : 0) + debug_tree_black_height(node->left);
}
void debug_print_tree(int indent, void *p) {
TreeAlloc *node = (TreeAlloc*) p;
if (node != NULL) {
int bad = debug_tree_black_height(node->left) != debug_tree_black_height(node->right);
bad |= node->color == COLOR_RED && ((node->left != NULL && node->left->color == COLOR_RED) ||
(node->right != NULL && node->right->color == COLOR_RED) || (node->parent != NULL &&
node->parent->color == COLOR_RED));
debug_print_tree(indent + 1, node->left);
for (int ii = 0; ii < indent; ii++) { printf(" "); }
if (node->color == COLOR_RED) { printf(bad ? "\e[30m]" : "\e[31m"); }
if (bad) { printf("\e[43m"); }
printf("%p %lu\n", node, node->size);
if (node->color == COLOR_RED) { printf("\e[37m"); }
if (bad) { printf("\e[40m"); }
debug_print_tree(indent + 1, node->right);
}
TreeAlloc *node = (TreeAlloc*) p;
if (node != NULL) {
int bad = debug_tree_black_height(node->left) != debug_tree_black_height(node->right);
bad |= node->color == COLOR_RED && ((node->left != NULL && node->left->color == COLOR_RED) ||
(node->right != NULL && node->right->color == COLOR_RED) || (node->parent != NULL &&
node->parent->color == COLOR_RED));
debug_print_tree(indent + 1, node->left);
for (int ii = 0; ii < indent; ii++) { printf(" "); }
if (node->color == COLOR_RED) { printf(bad ? "\e[30m]" : "\e[31m"); }
if (bad) { printf("\e[43m"); }
printf("%p %lu\n", node, node->size);
if (node->color == COLOR_RED) { printf("\e[37m"); }
if (bad) { printf("\e[40m"); }
debug_print_tree(indent + 1, node->right);
}
}
#endif
@ -42,26 +42,26 @@ TreeAlloc *insert_node_at(void *address, uintptr_t padding, uintptr_t align, uin
* Search for the node whose allocated region contains an address.
*/
TreeAlloc *search_by_address(TreeAlloc *root, void *address) {
TreeAlloc *head = root;
while (1) {
if (head > (TreeAlloc*) address) {
if (head->left == NULL) {
return NULL;
} else {
head = head->left;
}
} else {
if (head->right == NULL || head->right > (TreeAlloc*) address) {
return head;
} else {
head = head->right;
}
}
}
TreeAlloc *head = root;
while (1) {
if (head > (TreeAlloc*) address) {
if (head->left == NULL) {
return NULL;
} else {
head = head->left;
}
} else {
if (head->right == NULL || head->right > (TreeAlloc*) address) {
return head;
} else {
head = head->right;
}
}
}
}
static uintptr_t effective_size(TreeAlloc *head, uintptr_t padding, uintptr_t align) {
return head->size - (align_after(head + padding, align) - (void*) head);
return head->size - (align_after(head + padding, align) - (void*) head);
}
/*
@ -70,55 +70,55 @@ static uintptr_t effective_size(TreeAlloc *head, uintptr_t padding, uintptr_t al
* ordering.
*/
static uintptr_t pessimistic_size(TreeAlloc *head, uintptr_t padding, uintptr_t align) {
return head->size - padding - align + 1;
return head->size - padding - align + 1;
}
TreeAlloc *search_by_size(TreeAlloc *root, uintptr_t padding, uintptr_t align, uintptr_t size) {
TreeAlloc *head = root;
while (1) {
uintptr_t esize = pessimistic_size(head, padding, align);
if (esize < size) {
if (head->right == NULL) {
return NULL;
} else {
head = head->right;
}
} else {
if (head->left == NULL || pessimistic_size(head->left, padding, align) < size) {
return head;
} else {
head = head->left;
}
}
}
TreeAlloc *head = root;
while (1) {
uintptr_t esize = pessimistic_size(head, padding, align);
if (esize < size) {
if (head->right == NULL) {
return NULL;
} else {
head = head->right;
}
} else {
if (head->left == NULL || pessimistic_size(head->left, padding, align) < size) {
return head;
} else {
head = head->left;
}
}
}
}
TreeAlloc *succ(TreeAlloc *el) {
if (el->right != NULL) {
el = el->right;
while (el->left != NULL) {
el = el->left;
}
return el;
}
while (el->parent != NULL && el == el->parent->right) {
el = el->parent;
}
return el->parent;
if (el->right != NULL) {
el = el->right;
while (el->left != NULL) {
el = el->left;
}
return el;
}
while (el->parent != NULL && el == el->parent->right) {
el = el->parent;
}
return el->parent;
}
TreeAlloc *pred(TreeAlloc *el) {
if (el->left != NULL) {
el = el->left;
while (el->right != NULL) {
el = el->right;
}
return el;
}
while (el->parent != NULL && el == el->parent->left) {
el = el->parent;
}
return el->parent;
if (el->left != NULL) {
el = el->left;
while (el->right != NULL) {
el = el->right;
}
return el;
}
while (el->parent != NULL && el == el->parent->left) {
el = el->parent;
}
return el->parent;
}
TreeAlloc *get_sibling(TreeAlloc *ta) {
@ -132,51 +132,47 @@ TreeAlloc *get_sibling(TreeAlloc *ta) {
}
void rotate_left(TreeAlloc **root_ptr, TreeAlloc *ta) {
TreeAlloc *parent, *tmp;
parent = ta->parent;
tmp = ta->right;
if (!tmp) return;
ta->right = tmp->left;
tmp->left = ta;
ta->parent = tmp;
if (ta->right) ta->right->parent = ta;
if (parent == NULL) {
*root_ptr = tmp;
} else {
if (ta == parent->left)
parent->left = tmp;
else
parent->right = tmp;
}
tmp->parent = parent;
TreeAlloc *parent, *tmp;
tmp = ta->right;
parent = ta->parent;
ta->right = tmp->left;
if (ta->right) ta->right->parent = ta;
tmp->left = ta;
ta->parent = tmp;
tmp->parent = parent;
if (!parent) {
*root_ptr = tmp;
} else if (ta == parent->left) {
parent->left = tmp;
} else {
parent->right = tmp;
}
}
void rotate_right(TreeAlloc **root_ptr, TreeAlloc *ta) {
TreeAlloc *parent, *tmp;
parent = ta->parent;
tmp = ta->left;
if (!tmp) return;
ta->left = tmp->right;
tmp->right = ta;
ta->parent = tmp;
if (ta->left) ta->left->parent = ta;
if (parent == NULL) {
*root_ptr = tmp;
} else {
if (ta == parent->left)
parent->left = tmp;
else
parent->right = tmp;
}
tmp->parent = parent;
TreeAlloc *parent, *tmp;
tmp = ta->left;
parent = ta->parent;
ta->left = tmp->right;
if (ta->left) ta->left->parent = ta;
tmp->right = ta;
ta->parent = tmp;
tmp->parent = parent;
if (!parent) {
*root_ptr = tmp;
} else if (ta == parent->left) {
parent->left = tmp;
} else {
parent->right = tmp;
}
}
#define IS_BLACK_NODE(n) (n == NULL || n->color == COLOR_BLACK)
@ -185,51 +181,115 @@ void rotate_right(TreeAlloc **root_ptr, TreeAlloc *ta) {
void repair_tree_after_insert(TreeAlloc **root_ptr, TreeAlloc *ta) {
TreeAlloc *parent = ta->parent;
#ifdef DEBUG
printf("=== PRE-INSERT-FIXUP ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
printf("=== PRE-INSERT-FIXUP ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
if (parent == NULL) {
if (ta == *root_ptr) {
ta->color = COLOR_BLACK;
} else if (IS_BLACK_NODE(parent)) {
return;
}
TreeAlloc *grandparent = parent->parent;
TreeAlloc *uncle = get_sibling(parent);
} else {
TreeAlloc *uncle = get_sibling(parent);
TreeAlloc *grandparent = parent->parent;
if (IS_RED_NODE(parent)) {
if (IS_RED_NODE(uncle)) {
parent->color = COLOR_BLACK;
uncle->color = COLOR_BLACK;
grandparent->color = COLOR_RED;
grandparent->color = COLOR_RED;
repair_tree_after_insert(root_ptr, grandparent);
} else {
if (ta == parent->left && parent == grandparent->left) {
rotate_left(root_ptr, parent);
ta = ta->left;
parent = parent->left;
if (parent->left == ta) {
if (grandparent->left == parent) {
rotate_right(root_ptr, grandparent);
grandparent->color = COLOR_RED;
parent->color = COLOR_BLACK;
} else {
rotate_right(root_ptr, parent);
rotate_left(root_ptr, grandparent);
grandparent->color = COLOR_RED;
ta->color = COLOR_BLACK;
}
} else {
rotate_right(root_ptr, parent);
ta = ta->right;
parent = parent->right;
if (grandparent->left == parent) {
rotate_left(root_ptr, parent);
rotate_right(root_ptr, grandparent);
grandparent->color = COLOR_RED;
ta->color = COLOR_BLACK;
} else {
rotate_left(root_ptr, grandparent);
grandparent->color = COLOR_RED;
parent->color = COLOR_BLACK;
}
}
grandparent = parent->parent;
if (ta == parent->left) {
rotate_right(root_ptr, grandparent);
} else {
rotate_left(root_ptr, grandparent);
}
parent->color = COLOR_BLACK;
grandparent->color = COLOR_RED;
}
}
}
// Inserts a node into an empty tree.
void insert_singleton(TreeAlloc **root_ptr, TreeAlloc *to_insert) {
#ifdef DEBUG
printf("= PRE-INSERT-SINGLETON =\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
*root_ptr = to_insert;
to_insert->parent = NULL;
to_insert->color = COLOR_BLACK;
#ifdef DEBUG
printf("= POST-INSERT-SINGLETON =\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
}
void insert_right(TreeAlloc** root_ptr, TreeAlloc* to_insert, TreeAlloc* after) {
#ifdef DEBUG
printf("=== PRE-INSERT-RIGHT ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
if (after->right != NULL) {
after->right->parent = to_insert;
to_insert->right = after->right;
}
after->right = to_insert;
to_insert->parent = after;
to_insert->color = COLOR_RED;
repair_tree_after_insert(root_ptr, to_insert);
#ifdef DEBUG
printf("== POST-INSERT-FIXUP ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
}
void insert_left(TreeAlloc** root_ptr, TreeAlloc* to_insert, TreeAlloc* before) {
#ifdef DEBUG
printf("=== PRE-INSERT-LEFT ====\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
if (before->left != NULL) {
before->left->parent = to_insert;
to_insert->left = before->left;
}
before->left = to_insert;
to_insert->parent = before;
to_insert->color = COLOR_RED;
repair_tree_after_insert(root_ptr, to_insert);
#ifdef DEBUG
printf("== POST-INSERT-FIXUP ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
printf("== POST-INSERT-FIXUP ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
}
@ -291,10 +351,10 @@ void repair_after_remove(TreeAlloc **root_ptr, TreeAlloc *node) {
void remove_node(TreeAlloc **root_ptr, TreeAlloc *node) {
char do_repair = 0;
#ifdef DEBUG
printf("====== PRE-REMOVE ======\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
printf("====== PRE-REMOVE ======\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
TreeAlloc *replace;
TreeAlloc *parent = node->parent;
@ -322,295 +382,241 @@ void remove_node(TreeAlloc **root_ptr, TreeAlloc *node) {
node->left->parent = tmp;
}
// Make sure that it doesn't have any tree pointers it shouldn't have.
node->parent = node->left = node->right = NULL;
// Make sure that it doesn't have any tree pointers it shouldn't have.
node->parent = node->left = node->right = NULL;
if (replace && replace->parent == NULL) {
#ifdef DEBUG
printf("=== PRE-REMOVE-FIXUP ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
printf("=== PRE-REMOVE-FIXUP ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
replace->color = COLOR_BLACK;
replace->color = COLOR_BLACK;
} else if (do_repair && replace) {
#ifdef DEBUG
printf("=== PRE-REMOVE-FIXUP ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
printf("=== PRE-REMOVE-FIXUP ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
repair_after_remove(root_ptr, replace);
}
#ifdef DEBUG
printf("=== POST-REMOVE ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
}
// Inserts a node into an empty tree.
void insert_singleton(TreeAlloc **root_ptr, TreeAlloc *to_insert) {
#ifdef DEBUG
printf("= PRE-INSERT-SINGLETON =\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
*root_ptr = to_insert;
to_insert->parent = NULL;
to_insert->color = COLOR_BLACK;
#ifdef DEBUG
printf("= POST-INSERT-SINGLETON =\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
}
void insert_right(TreeAlloc** root_ptr, TreeAlloc* to_insert, TreeAlloc* after) {
#ifdef DEBUG
printf("=== PRE-INSERT-RIGHT ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
printf("=== POST-REMOVE ===\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
if (after->right != NULL) {
after->right->parent = to_insert;
to_insert->right = after->right;
}
after->right = to_insert;
to_insert->parent = after;
to_insert->color = COLOR_RED;
repair_tree_after_insert(root_ptr, to_insert);
}
void insert_left(TreeAlloc** root_ptr, TreeAlloc* to_insert, TreeAlloc* before) {
#ifdef DEBUG
printf("=== PRE-INSERT-LEFT ====\n");
printf("===== CURRENT TREE =====\n");
debug_print_tree(0, *root_ptr);
printf("===== END OF TREES =====\n");
#endif
if (before->left != NULL) {
before->left->parent = to_insert;
to_insert->left = before->left;
}
before->left = to_insert;
to_insert->parent = before;
to_insert->color = COLOR_RED;
repair_tree_after_insert(root_ptr, to_insert);
}
int add_new_region(Arena *arena, uintptr_t size, uintptr_t padding, uintptr_t align) {
uintptr_t realsize = size + align + alignof(WatermarkAlloc) + padding - 1;
if (realsize < MIN_NEW_MEM_SIZE) {
realsize = MIN_NEW_MEM_SIZE;
}
FreeSpace *reg = (FreeSpace*) arena->get_new_region(realsize);
if (reg == NULL) {
arena->error("can't allocate a new memory region!");
return 0;
}
FreeSpace *newreg = align_after(reg, alignof(WatermarkAlloc));
newreg->left = NULL;
newreg->right = NULL;
realsize -= (void*) newreg - (void*) reg;
realsize -= realsize % alignof(WatermarkAlloc);
newreg->size = realsize;
if (arena->root_freespace == NULL) {
insert_singleton((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) newreg);
} else {
FreeSpace *head = arena->root_freespace;
while (head->right != NULL) {
head = head->right;
}
insert_right((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) newreg, (TreeAlloc*) head);
}
uintptr_t realsize = size + align + alignof(WatermarkAlloc) + padding - 1;
if (realsize < MIN_NEW_MEM_SIZE) {
realsize = MIN_NEW_MEM_SIZE;
}
FreeSpace *reg = (FreeSpace*) arena->get_new_region(realsize);
if (reg == NULL) {
arena->error("can't allocate a new memory region!");
return 0;
}
FreeSpace *newreg = align_after(reg, alignof(WatermarkAlloc));
newreg->left = NULL;
newreg->right = NULL;
realsize -= (void*) newreg - (void*) reg;
realsize -= realsize % alignof(WatermarkAlloc);
newreg->size = realsize;
if (arena->root_freespace == NULL) {
insert_singleton((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) newreg);
} else {
FreeSpace *head = arena->root_freespace;
while (head->right != NULL) {
head = head->right;
}
insert_right((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) newreg, (TreeAlloc*) head);
}
#ifdef DEBUG
printf("= POST-REGION-CREATION =\n");
printf("==== FREESPACE TREE ====\n");
debug_print_tree(0, arena->root_freespace);
printf("==== TREEALLOC TREE ====\n");
debug_print_tree(0, arena->root_treealloc);
printf("===== END OF TREES =====\n");
printf("= POST-REGION-CREATION =\n");
printf("==== FREESPACE TREE ====\n");
debug_print_tree(0, arena->root_freespace);
printf("==== TREEALLOC TREE ====\n");
debug_print_tree(0, arena->root_treealloc);
printf("===== END OF TREES =====\n");
#endif
return 1;
return 1;
}
void unalloc(Arena *arena, void *addr) {
#ifdef DEBUG
printf("==== UNALLOCATING ====\n");
printf("=== FREESPACE TREE ===\n");
debug_print_tree(0, arena->root_freespace);
printf("=== TREEALLOC TREE ===\n");
debug_print_tree(0, arena->root_treealloc);
printf("==== END OF TREES ====\n");
printf("==== UNALLOCATING ====\n");
printf("=== FREESPACE TREE ===\n");
debug_print_tree(0, arena->root_freespace);
printf("=== TREEALLOC TREE ===\n");
debug_print_tree(0, arena->root_treealloc);
printf("==== END OF TREES ====\n");
#endif
if (arena->root_treealloc == NULL) {
arena->error("attempt to unallocate when there are no allocations!");
return;
}
// Find the node this address belongs to
TreeAlloc *node = search_by_address(arena->root_treealloc, addr);
if (node == NULL) {
arena->error("attempt to free memory outside any allocations!");
return;
}
// Handle the watermark allocator in this region
if (node->type == RT_WATERMARK) {
// TODO: handle watermark deallocation
return;
}
// Get rid of it
remove_node(&arena->root_treealloc, node);
// If there's free space on either side of it, merge it with the free space into a bigger chunk of
// free space.
uintptr_t size = node->size;
FreeSpace *start = (FreeSpace*) node;
if (node->before != NULL && node->before->type == RT_FREESPACE) {
start = (FreeSpace*) node->before;
size += node->before->size;
remove_node((TreeAlloc**) &arena->root_freespace, node->before);
}
if (node->after != NULL && node->after->type == RT_FREESPACE) {
size += node->after->size;
remove_node((TreeAlloc**) &arena->root_freespace, node->after);
}
start->type = RT_FREESPACE;
start->size = size;
// And finally, insert the resulting free space.
if (arena->root_freespace == NULL) {
insert_singleton((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) start);
} else {
TreeAlloc *insert_point = search_by_size((TreeAlloc*) arena->root_freespace, 0, 1, size);
if (insert_point == NULL) {
TreeAlloc *head = (TreeAlloc*) arena->root_freespace;
while (head->right != NULL) {
head = head->right;
}
insert_right((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) start, head);
} else {
insert_left((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) start, insert_point);
}
}
if (arena->root_treealloc == NULL) {
arena->error("attempt to unallocate when there are no allocations!");
return;
}
// Find the node this address belongs to
TreeAlloc *node = search_by_address(arena->root_treealloc, addr);
if (node == NULL) {
arena->error("attempt to free memory outside any allocations!");
return;
}
// Handle the watermark allocator in this region
if (node->type == RT_WATERMARK) {
// TODO: handle watermark deallocation
return;
}
// Get rid of it
remove_node(&arena->root_treealloc, node);
// If there's free space on either side of it, merge it with the free space into a bigger chunk of
// free space.
uintptr_t size = node->size;
FreeSpace *start = (FreeSpace*) node;
if (node->before != NULL && node->before->type == RT_FREESPACE) {
start = (FreeSpace*) node->before;
size += node->before->size;
remove_node((TreeAlloc**) &arena->root_freespace, node->before);
}
if (node->after != NULL && node->after->type == RT_FREESPACE) {
size += node->after->size;
remove_node((TreeAlloc**) &arena->root_freespace, node->after);
}
start->type = RT_FREESPACE;
start->size = size;
// And finally, insert the resulting free space.
if (arena->root_freespace == NULL) {
insert_singleton((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) start);
} else {
TreeAlloc *insert_point = search_by_size((TreeAlloc*) arena->root_freespace, 0, 1, size);
if (insert_point == NULL) {
TreeAlloc *head = (TreeAlloc*) arena->root_freespace;
while (head->right != NULL) {
head = head->right;
}
insert_right((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) start, head);
} else {
insert_left((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) start, insert_point);
}
}
}
void *alloc(Arena *arena, uintptr_t size, uintptr_t align) {
uintptr_t actual_align = lcm(alignof(struct WatermarkAlloc), align);
uintptr_t actual_align = lcm(alignof(struct WatermarkAlloc), align);
#ifdef DEBUG
printf("==== ALLOCATING =====\n");
printf("=== FREESPACE TREE ===\n");
debug_print_tree(0, arena->root_freespace);
printf("=== TREEALLOC TREE ===\n");
debug_print_tree(0, arena->root_treealloc);
printf("==== END OF TREES ====\n");
printf("==== ALLOCATING =====\n");
printf("=== FREESPACE TREE ===\n");
debug_print_tree(0, arena->root_freespace);
printf("=== TREEALLOC TREE ===\n");
debug_print_tree(0, arena->root_treealloc);
printf("==== END OF TREES ====\n");
#endif
if (arena->root_freespace == NULL) {
// Handle being out of freespace.
if (arena->root_freespace == NULL) {
// Handle being out of freespace.
#ifdef DEBUG
printf("Out of freespace nodes; getting more\n");
printf("Out of freespace nodes; getting more\n");
#endif
if (!add_new_region(arena, size, sizeof(TreeAlloc), actual_align)) {
return NULL;
}
return alloc(arena, size, align);
} else {
TreeAlloc *region = search_by_size((TreeAlloc*) arena->root_freespace, sizeof(TreeAlloc), actual_align, size);
if (region == NULL) {
// Handle insufficient freespace or fragmentation.
if (!add_new_region(arena, size, sizeof(TreeAlloc), actual_align)) {
return NULL;
}
return alloc(arena, size, align);
} else {
TreeAlloc *region = search_by_size((TreeAlloc*) arena->root_freespace, sizeof(TreeAlloc), actual_align, size);
if (region == NULL) {
// Handle insufficient freespace or fragmentation.
#ifdef DEBUG
printf("Out of sufficiently large freespace nodes; getting more\n");
printf("Out of sufficiently large freespace nodes; getting more\n");
#endif
if (!add_new_region(arena, size, sizeof(TreeAlloc), actual_align)) {
return NULL;
}
return alloc(arena, size, align);
}
remove_node((TreeAlloc**) &arena->root_freespace, region);
void *true_end = align_after(align_after(((void*) region) + sizeof(TreeAlloc), actual_align) + size, alignof(WatermarkAlloc));
// The size of the new allocation (adjusted for region header and alignment
uintptr_t new_size = true_end - (void*) region;
// The size of the free space region following the new allocation
uintptr_t new_free_size = region->size - new_size;
region->right = NULL;
region->left = NULL;
region->type = RT_TREE_NODE;
if (!add_new_region(arena, size, sizeof(TreeAlloc), actual_align)) {
return NULL;
}
return alloc(arena, size, align);
}
remove_node((TreeAlloc**) &arena->root_freespace, region);
void *true_end = align_after(align_after(((void*) region) + sizeof(TreeAlloc), actual_align) + size, alignof(WatermarkAlloc));
// The size of the new allocation (adjusted for region header and alignment
uintptr_t new_size = true_end - (void*) region;
// The size of the free space region following the new allocation
uintptr_t new_free_size = region->size - new_size;
region->right = NULL;
region->left = NULL;
region->type = RT_TREE_NODE;
#ifdef DEBUG
printf("start: %p, end: %p, adjusted end: %p\n", region, ((void*) region) + size, true_end);
printf("size: %lu -> %lu\n", size, new_size);
printf("start: %p, end: %p, adjusted end: %p\n", region, ((void*) region) + size, true_end);
printf("size: %lu -> %lu\n", size, new_size);
#endif
if (arena->root_treealloc == NULL) {
insert_singleton((TreeAlloc**) &arena->root_treealloc, region);
} else {
if (arena->root_treealloc == NULL) {
insert_singleton((TreeAlloc**) &arena->root_treealloc, region);
} else {
#ifdef DEBUG
printf("searching for an insert point\n");
printf("searching for an insert point\n");
#endif
TreeAlloc *insert_point = search_by_address((TreeAlloc*) arena->root_treealloc, region);
if (insert_point == NULL) {
TreeAlloc *head = arena->root_treealloc;
while (head->left != NULL) {
head = head->left;
}
TreeAlloc *insert_point = search_by_address((TreeAlloc*) arena->root_treealloc, region);
if (insert_point == NULL) {
TreeAlloc *head = arena->root_treealloc;
while (head->left != NULL) {
head = head->left;
}
#ifdef DEBUG
printf("none found; inserting before %p\n", head);
printf("none found; inserting before %p\n", head);
#endif
insert_left(&arena->root_treealloc, region, head);
} else {
insert_left(&arena->root_treealloc, region, head);
} else {
#ifdef DEBUG
printf("found one: %p\n", insert_point);
printf("found one: %p\n", insert_point);
#endif
insert_right(&arena->root_treealloc, region, insert_point);
}
}
if (new_free_size >= sizeof(FreeSpace)) {
// If there's enough free space after the allocation, use it!
region->size = new_size; // Safe because the allocated region tree is not sorted by size.
FreeSpace *new_free = (FreeSpace*) ((void*) region + new_size);
new_free->left = NULL;
new_free->right = NULL;
new_free->type = RT_FREESPACE;
new_free->size = new_free_size;
if (arena->root_freespace == NULL) {
insert_singleton((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) new_free);
} else {
FreeSpace *insert_point = (FreeSpace*) search_by_size((TreeAlloc*) arena->root_freespace, 0, 1, new_free_size);
insert_left((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) new_free, (TreeAlloc*) insert_point);
}
// Set the region following this one to be the new free space
region->after = (TreeAlloc*) new_free;
} else {
// There isn't a free space after this one, so put the `next` pointer at the next allocated
// region.
region->after = succ(region);
}
// I seem to have forgotten about the fact that memory may not be contiguous
if (region->after != NULL && region->after != (void*) region + region->size) {
region->after = NULL;
}
// Also make sure the `before` pointer is correct.
TreeAlloc *before_alloc = pred(region);
if (before_alloc == NULL || ((void*) before_alloc) + before_alloc->size < (void*) region) {
region->before = search_by_address((TreeAlloc*) arena->root_freespace, region);
} else {
region->before = before_alloc;
}
// I seem to have forgotten about the fact that memory may not be contiguous
if (region->before != NULL && region->before != (void*) region->before + region->before->size) {
region->before = NULL;
}
insert_right(&arena->root_treealloc, region, insert_point);
}
}
if (new_free_size >= sizeof(FreeSpace)) {
// If there's enough free space after the allocation, use it!
region->size = new_size; // Safe because the allocated region tree is not sorted by size.
FreeSpace *new_free = (FreeSpace*) ((void*) region + new_size);
new_free->left = NULL;
new_free->right = NULL;
new_free->type = RT_FREESPACE;
new_free->size = new_free_size;
if (arena->root_freespace == NULL) {
insert_singleton((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) new_free);
} else {
FreeSpace *insert_point = (FreeSpace*) search_by_size((TreeAlloc*) arena->root_freespace, 0, 1, new_free_size);
insert_left((TreeAlloc**) &arena->root_freespace, (TreeAlloc*) new_free, (TreeAlloc*) insert_point);
}
// Set the region following this one to be the new free space
region->after = (TreeAlloc*) new_free;
} else {
// There isn't a free space after this one, so put the `next` pointer at the next allocated
// region.
region->after = succ(region);
}
// I seem to have forgotten about the fact that memory may not be contiguous
if (region->after != NULL && region->after != (void*) region + region->size) {
region->after = NULL;
}
// Also make sure the `before` pointer is correct.
TreeAlloc *before_alloc = pred(region);
if (before_alloc == NULL || ((void*) before_alloc) + before_alloc->size < (void*) region) {
region->before = search_by_address((TreeAlloc*) arena->root_freespace, region);
} else {
region->before = before_alloc;
}
// I seem to have forgotten about the fact that memory may not be contiguous
if (region->before != NULL && region->before != (void*) region->before + region->before->size) {
region->before = NULL;
}
#ifdef DEBUG
printf("region is still at %p\n", region);
printf("region is still at %p\n", region);
#endif
return align_after((void*) region + sizeof(TreeAlloc), actual_align);
}
return align_after((void*) region + sizeof(TreeAlloc), actual_align);
}
}
void *alloc_growable(Arena *arena, uintptr_t size, uintptr_t align) {
// TODO: Basically the same as above, but put the allocated region in the center of the largest free
// space. Due to alignment and whatnot, the code will be gory.
return NULL;
// TODO: Basically the same as above, but put the allocated region in the center of the largest free
// space. Due to alignment and whatnot, the code will be gory.
return NULL;
}
Loading…
Cancel
Save